Brownian and fractional Brownian stochastic currents via Malliavin calculus
نویسندگان
چکیده
By using Malliavin calculus and multiple Wiener-Itô integrals, we study the existence and the regularity of stochastic currents defined as Skorohod (divergence) integrals with respect to the Brownian motion and to the fractional Brownian motion. We consider also the multidimensional multiparameter case and we compare the regularity of the current as a distribution in negative Sobolev spaces with its regularity in Watanabe space. 2000 AMS Classification Numbers: 60G15, 60G18, 60H05, 76M35, 60H05
منابع مشابه
Title Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions
We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H > 1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential eq...
متن کاملParameter estimation for stochastic equations with additive fractional Brownian sheet
We study the maximum likelihood estimator for stochastic equations with additive fractional Brownian sheet. We use the Girsanov transform for the twoparameter fractional Brownian motion, as well as the Malliavin calculus and Gaussian regularity theory. Mathematics Subject Classification (2000): 60G15, G0H07, 60G35, 62M40
متن کاملStochastic Analysis of the Fractional BrownianMotionBy
Since the fractional Brownian motion is not a semiimartingale, the usual Ito calculus cannot be used to deene a full stochastic calculus. However, in this work, we obtain the Itt formula, the ItttClark representation formula and the Girsanov theorem for the functionals of a fractional Brownian motion using the stochastic calculus of variations.
متن کاملFractional Brownian motion: stochastic calculus and applications
Fractional Brownian motion (fBm) is a centered self-similar Gaussian process with stationary increments, which depends on a parameter H ∈ (0, 1) called the Hurst index. In this note we will survey some facts about the stochastic calculus with respect to fBm using a pathwise approach and the techniques of the Malliavin calculus. Some applications in turbulence and finance will be discussed. Math...
متن کاملStochastic calculus with respect to fractional Brownian motion
— Fractional Brownian motion (fBm) is a centered selfsimilar Gaussian process with stationary increments, which depends on a parameter H ∈ (0, 1) called the Hurst index. In this conference we will survey some recent advances in the stochastic calculus with respect to fBm. In the particular case H = 1/2, the process is an ordinary Brownian motion, but otherwise it is not a semimartingale and Itô...
متن کامل