Brownian and fractional Brownian stochastic currents via Malliavin calculus

نویسندگان

  • Franco Flandoli
  • Ciprian A. Tudor
چکیده

By using Malliavin calculus and multiple Wiener-Itô integrals, we study the existence and the regularity of stochastic currents defined as Skorohod (divergence) integrals with respect to the Brownian motion and to the fractional Brownian motion. We consider also the multidimensional multiparameter case and we compare the regularity of the current as a distribution in negative Sobolev spaces with its regularity in Watanabe space. 2000 AMS Classification Numbers: 60G15, 60G18, 60H05, 76M35, 60H05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions

We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H > 1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential eq...

متن کامل

Parameter estimation for stochastic equations with additive fractional Brownian sheet

We study the maximum likelihood estimator for stochastic equations with additive fractional Brownian sheet. We use the Girsanov transform for the twoparameter fractional Brownian motion, as well as the Malliavin calculus and Gaussian regularity theory. Mathematics Subject Classification (2000): 60G15, G0H07, 60G35, 62M40

متن کامل

Stochastic Analysis of the Fractional BrownianMotionBy

Since the fractional Brownian motion is not a semiimartingale, the usual Ito calculus cannot be used to deene a full stochastic calculus. However, in this work, we obtain the Itt formula, the ItttClark representation formula and the Girsanov theorem for the functionals of a fractional Brownian motion using the stochastic calculus of variations.

متن کامل

Fractional Brownian motion: stochastic calculus and applications

Fractional Brownian motion (fBm) is a centered self-similar Gaussian process with stationary increments, which depends on a parameter H ∈ (0, 1) called the Hurst index. In this note we will survey some facts about the stochastic calculus with respect to fBm using a pathwise approach and the techniques of the Malliavin calculus. Some applications in turbulence and finance will be discussed. Math...

متن کامل

Stochastic calculus with respect to fractional Brownian motion

— Fractional Brownian motion (fBm) is a centered selfsimilar Gaussian process with stationary increments, which depends on a parameter H ∈ (0, 1) called the Hurst index. In this conference we will survey some recent advances in the stochastic calculus with respect to fBm. In the particular case H = 1/2, the process is an ordinary Brownian motion, but otherwise it is not a semimartingale and Itô...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009